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Next-generation high-performance computing will require more scalable and flexible performance predic-
tion tools to evaluate software-hardware co-design choices relevant to scientific applications and hardware
architectures. We present a new class of tools called application simulators, parameterized fast-running
proxies of large-scale scientific applications using parallel discrete event simulation (PDES). Parameterized
choices for the algorithmic method and hardware options provide a rich space for design exploration and al-
low us to quickly find well-performing software-hardware combinations. We demonstrate our approach with
a TADSim simulator that models the Temperature Accelerated Dynamics (TAD) method, an algorithmically
complex and parameter-rich member of the Accelerated Molecular Dynamics (AMD) family of molecular
dynamics methods. The essence of the TAD application is captured without the computational expense and
resource usage of the full code. We accomplish this by identifying the time intensive elements, quantifying
algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of
time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the
otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as spec-
ulative spawning of the compute-bound stages, and predict performance improvements without having to
implement such a method. Validation against the actual TAD code shows close agreement for the evolution
of an example physical system, a silver surface. Focused parameter scans have allowed us to study algorithm
parameter choices over far more scenarios than would be possible with the actual simulation. This has led
to interesting performance-related insights and suggested extensions.

Categories and Subject Descriptors: I.6 [Computing Methodologies]: Simulation and Modeling

General Terms: Discrete-event simulation, Distributed simulation, Performance

Additional Key Words and Phrases: Accelerated molecular dynamics, Temperature accelerated dynamics

ACM Reference Format:
S. M. Mniszewski, C. Junghans, A. F. Voter, D. Perez, and S. J. Eidenbenz, 2014. TADSim: Discrete Event-
based Performance Prediction for Temperature Accelerated Dynamics. ACM Trans. Model. Comput. Simul.
V, N, Article A (January YYYY), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

This work is supported by the Los Alamos National Laboratory, under Laboratory Directed Research and
Development.
Author’s addresses: S. M. Mniszewski and C. Junghans and S. J. Eidenbenz, Computer, Computational
& Statistical Sciences Division, Los Alamos National Laboratory; A. F. Voter and D. Perez, Theoretical
Division, Los Alamos National Laboratory.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-3301/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 S. Mniszewski et al.

1. INTRODUCTION
New computer architectures, software stacks, and algorithms will be necessary to fur-
ther advance scientific research. These changes make challenges related to power
consumption, cost of data movement, limited memory, data locality, extreme concur-
rency, and resilience increasingly pressing, especially as we progress towards exascale.
Current architectural paths to exascale include multicore high-end CPUs such as In-
tel’s X86, manycore/embedded simpler low power cores from embedded systems, and
GPU/accelerated highly specialized processors from the graphics/gaming market space
such as NVIDIA’s Tesla and Intel’s Xeon Phi Many Integrated Core (MIC). The High
Performance Computing (HPC) field has become an adopter of these technologies. The
HPC community, driven — among others — by the national security needs of the U.
S. Department of Energy’s (DOE) national laboratories, is involved in “computational
co-design” efforts using their traditional software portfolio of physics applications to
influence and be influenced by next-generation architectures [U. S. Department of
Energy Office of Science 2012; Advanced Simulation and Computing Program 2012].
Computational co-design refers to the close coupling of hardware and software design.
Co-design is a very well established set of methodologies in embedded systems [Wolf
1994]; extending these concepts to high-performance computing is a DOE science strat-
egy [U. S. Department of Energy Office of Science 2014].

A view of co-design is that of a performance-guided search and selection from a de-
sign space of software and hardware options [Eidenbenz et al. 2012]. For each set
of hardware-software choices, we predict the performance using scalable distributed
discrete event simulation. The performance measures of interest are runtime metrics
such as wall clock time (WCT), speedup, or energy usage. Based on these results, an
optimization step — using either a scan of the design spaces or a guided search using
optimization techniques such as genetic algorithms, tabu search, or simplex optimiza-
tion methods — identifies the optimal instance in the search space. Parameterizations
define the possible software and hardware options and each can be represented at a
different level of fidelity. For example, when focusing on performance prediction of dif-
ferent algorithmic variants of the software implementation of a method, a coarse model
may be sufficient at the hardware level.

The central role of performance prediction via simulation in our co-design approach
is the main topic of this work, and here we focus primarily on exploring the software
design space. We introduce the concept of a parameterized application simulator. The
key stages of an application are modeled as discrete events, while abstracting time-
intensive parts or kernels of the application. The logic of an application or pseudo-
code is simulated, including loops, control flow, and termination conditions, similar
to a state-machine (see Fig. 1). Designing an application simulator requires: identi-
fying the time-intensive elements, quantifying the different algorithm steps in terms
of those elements, abstracting them out, and replacing them by the passage of time.
A low fidelity hardware architecture model is defined, considering parameters such
as processor speed, core counts available, communications time, and thread overhead.
Instrumentation is available for the collection of performance metrics. The software
and hardware parameters specified in the simulator define the hardware and soft-
ware design spaces that we explore. Application simulators allow for fast exploration
of application design spaces, testing of new algorithmic extensions before actual im-
plementation, and even testing of proposed hardware architectures that do not yet
exist.

Here, we use an accelerated molecular dynamics (AMD) method, namely temper-
ature accelerated dynamics (TAD), to illustrate this application simulation concept.
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The development of this co-design approach was guided by this algorithmically com-
plex and parameter-rich method.

2. THE APPLICATION SIMULATOR CONCEPT
The application simulator approach is most useful for performance analysis of applica-
tions that do not have predictable progression prior to runtime. Indeed, performance
prediction of typical bulk synchronous parallel (BSP) approaches in most current-day
physics simulation codes can often be accomplished by analytical methods. We view
PDES as the most appropriate solution for modeling complex applications at the algo-
rithmic level, when cycle-accurate results are not required. As we move towards next-
generation HPC, asynchronous programming models are becoming more common, re-
quiring alternative approaches. The use of PDES for performance prediction is then
an attractive choice. This approach could be especially powerful in cases where the
runtimes of certain sections of the codes are not constant, but can vary significantly
from one case to the next (e.g., if a non-linear problem needs to be solved, or when the
stop time of some procedure is a random variable). Assessing the performance of vari-
ous implementation and parallelization strategies would be best approached by direct
simulation, as analytical methods would rapidly become tedious.

An application simulator is ideally suited to represent an algorithm that spends
most of its runtime performing some atomic unit of work. This can be a frequently
used computationally intensive calculation, a data access/movement pattern, or a com-
munication sequence. The algorithm can then be represented as a state diagram of a
repeatable loop sequence of stages with a stopping condition, where each stage’s run-
time is specified in atomic units of work. This allows us to abstract out time-consuming
computations, yielding a fast-running DES proxy. Stochastic decision can be included
to drive branching, stopping conditions, asynchronous communication and/or spawn-
ing of subtasks. Software, hardware, and algorithm parameters are then defined. The
parameters reflect the value of tunable constants or allow for different algorithmic
choices. These parameters can be very specific or general based on the level of model-
ing abstraction desired. Instrumentation is added to collect performance, logic-based,
and resource usage metrics. Due to the absence of executing work units, pre-computed
information may be necessary to drive the simulation. Details of the dynamics can be
obtained by mining the event progression of a simulation carried out with a standard
version of the program.

Building an application simulator is currently a manual effort as automated tools
are not yet available. Knowledge elicitation from domain experts is required.

3. RELATED WORK
The choice of parallel discrete event simulation (PDES) [Banks et al. 2008; Fuji-
moto 1990; Liu 2010] complements other performance prediction methods that include
closed-form analytical models [Bauer et al. 2012; Spafford and Vetter 2012], semi-
analytical models [Barker et al. 2006; Barker et al. 2009], simulation [Bagrodia et al.
1999; Rodrigues et al. 2011], emulation [Xia et al. 2004; Santhi et al. 2013], and hybrid
simulation-emulation [Binkert et al. 2011; Calheiros et al. 2012; Zheng et al. 2004].

We note that the Scalable Simulation Toolkit (SST) [Rodrigues et al. 2011; Hendry
and Rodriguez 2012] is a laudable example of PDES use in performance prediction.
Unlike our application simulators, SST requires proxy application code as input and
produces simulations that run slower than the actual application, which does not allow
for exploring large parameter spaces and quick testing of new algorithmic ideas. The
faster running SST/macro coarse-grain simulator runs a skeletonization of an applica-
tion code for studying the effect of network parameters and topology on performance.
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A skeleton preserves the control flow of communication code, but does not retain the
domain algorithm behavior.

The simulation of software simulations is not new. The SIMSIM meta-simulation
has been used for load-balancing of parallel and distributed simulation systems [Ewald
et al. 2006] to understand behavior and performance characteristics. Application simu-
lators are used to explore and understand the behavior of systems over many scenarios.
A methodology was developed to predict the performance of a distributed simulation of
an HLA middleware system prior to implementation [Gianni et al. 2010]. Likewise, the
performance of algorithmic extensions can be evaluated prior to implementation us-
ing application simulation. The SONSim second-order simulation was used to predict
performance for computer network simulations [Andelfinger and Hartenstein 2013].
Parameters related to different topologies (such as interconnected subnetworks, peer-
to-peer networks, and wireless networks) and hardware choices (ex. Ethernet and In-
finiband interconnects) were used to assess whether the simulation would benefit from
parallelization. Software and hardware model parameter choices were available to ex-
plore the design space for application simulators and the abstract hardware model
allowed for reasonably accurate performance predictions.

In cases where analytical models are too cumbersome, another valuable alternative
is experimental algorithmics [McGeoch 2012]. The focus is on empirical methods to aid
in building better algorithms and understanding performance given a set of conditions
and assumptions [McGeoch 2007]. As an example, this approach has been used to
understand cache performance for sorting programs and produce more cache-oblivious
ones. Similarly, an application simulator of a physics code can be used to understand
the performance under many parameterized scenarios not previously explored.

Simulation was shown to be a viable approach for performance prediction of
stochastic algorithms using a machine-learning approach in [Jeschke et al. 2011].
Parametrized components or sub-algorithms serving as elements of a design space are
composed in different combinations to represent the domain code of interest. The use
of small benchmark models was shown to provide valuable insight into the algorithm
performance.

Another co-design approach to design space exploration is driven by the notion of
a mini-application or mini-app from the Mantevo project (mantevo.org). Here a mini-
app is a self-contained proxy for a real scientific code that contains key performance
aspects of this type of application. They are written to be amenable to re-factoring or
change but representative enough to be useful in the scientific problem domain. These
open source proxies are available to computer hardware vendors and software stack
developers to study and improve application performance. They operate stand-alone
or in simulated environments. In contrast, an application simulator is a virtualization
of a scientific code in the form of an event-based simulator. The hardware environment
is represented only at the level that is necessary to explore a given domain codebase.
Some design choices can be expressed as parameterized options. Both approaches re-
quire re-factoring or rewrites for exploring different programming models and signifi-
cant algorithm changes.

4. APPLICATION TO MOLECULAR DYNAMICS
As a first application of this methodology, we target atomistic simulation methods in
the Molecular Dynamics (MD) family. MD is a computer simulation technique for mod-
eling the physical evolution of interacting atoms by numerically solving their equation
of motion. In order to carry out the integration, forces acting on atoms are derived
from a potential, a so-called molecular mechanics force field. These calculations, com-
monly called force calls, are the computational core and dominant cycle-burner in any
MD code. MD is widely used [Rapaport 2004] in material science [Steinhauser and Hi-
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ermaier 2009], chemical physics [Clark 1985], and the modeling of biomolecules [Mc-
Cammon and Harvey 1988].

Conventional molecular dynamics allows one to access time scales on the order of
hundreds of nanoseconds to microseconds. Efforts to explore longer time scales have
led to the development of Accelerated Molecular Dynamics (AMD) methods that pro-
vide access to time scales on the order of milliseconds to seconds or more. For many
material systems, the dynamical evolution on these longer time scales is characterized
by infrequent events, in which the system makes occasional transitions from one state
to another (i.e., long periods of uneventful vibrations are punctuated by rare topology
changes). The AMD methods exploit this infrequency characteristic to reach longer
times.

Three such AMD generalizations have been proposed [Voter et al. 2002; Perez et al.
2009]. These techniques include simulating at a higher temperature to speed up tran-
sitions, parallelizing time through running multiple replicas in parallel, or modifying
the interatomic potential in a controlled way. In all these cases, one has to then map
the results (in a statistical sense) into the original, unbiased, conditions. AMD has
been used to investigate a wide range of important phenomena occurring at the atomic
scale, such as the velocity dependence of friction during friction force microscopy exper-
iments [Li et al. 2011] and radiation damage annealing processes relevant for nuclear
structural materials [Bai et al. 2010], to name only a few. The temperature-raising
method, Temperature Accelerated Dynamics (TAD), which is a complex and algorith-
mically interesting AMD method, is the subject of the present work.

In our TAD application simulator, TADSim, we exploit the fact that the force call
is by far the most computationally expensive part of any (A)MD method, accounting
for at least 90% of all cycles. The runtime of a force call depends on the interatomic
potential function (the gradient of which is proportional to the forces acting on each
atom), the number of atoms, and the number of cores available. The force call is con-
sidered to be the atomistic time unit, abstracted out, and represented by the passage
of simulation time, enabling fast simulations while allowing for reliable predictions of
the application’s run time. As shown in Fig. 1, the TAD algorithm is then expressed
as a sequence of stages, each represented by an event, and whose cost is measured in
required number of force calls. We focus at a detailed level of the algorithm using spe-
cific parameters, while the hardware is viewed at a higher level and described using
more general parameters.

5. TEMPERATURE ACCELERATED DYNAMICS (TAD) METHOD
In this section we will introduce the algorithm and discuss the parameters used for per-
formance prediction. For a detailed discussion of TAD, we refer the reader to [Sorensen
and Voter 2000]. TAD is an algorithm for reaching long time scales in molecular dy-
namics (MD) simulations. With few exceptions, direct MD is limited to a maximum
simulation time on the order of one microsecond, due to the requirement that the in-
tegration time steps are short enough (∼ 10−15 s) to resolve the atomic vibrations
(∼ 10−13 s). For most materials, the dynamical evolution on these longer time scales is
characterized by infrequent events, in which the system makes occasional transitions
from one state to another. An individual state is a 3N-dimensional potential basin
(where N is the number of moving atoms), shaped parabolically near the minimum.
An example of such an event is the jump of a vacancy in a solid or an atom on a sur-
face, and much more complex events, sometimes involving many atoms, can occur as
well. The accelerated molecular dynamics methods, of which TAD is one, exploit this
infrequency characteristic to reach longer times. We chose TAD for this initial study
because its rich set of parameters make performance prediction at different settings
difficult.
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In a direct MD simulation, once an interatomic potential and appropriate boundary
conditions have been specified, one simply integrates the classical equations of motion,
perhaps modified to take into account coupling to a thermal bath at a desired temper-
ature T . The MD trajectory, within its microsecond limitation, will then make these
occasional transitions from state to state automatically. The system vibrates in this
basin many times until a fluctuation causing a large excursion takes the trajectory
over a ridge-top to an adjacent basin. There is a saddle point associated with this tran-
sition (the point on the ridge top with zero gradient of the potential energy and one
negatively curved direction corresponding to the reaction path), and there is typically
a large number of adjacent basins to which the transition can take place.

The key to reaching longer time scales for this kind of system is to pick one of the
adjacent states, and an associated time, for the next transition. The probability for
transitioning to a particular adjacent state is proportional to the rate constant for es-
cape to that state. The rate constant to each of these states can be accurately approxi-
mated using transition state theory [Marcelin 1915], and if all the adjacent states are
known, one escape path can be chosen at random, weighted by its escape rate. Because
the first-passage time is exponentially distributed for such rare events,

p(t) = ke−kt, (1)

where the exponent k is the sum of the rates over all escape paths out of the state, an
appropriate time for the escape can be generated using

tRandom = (1/k)ln(1/r), (2)

where r is a random number distributed uniformly on (0,1]. This stochastic procedure,
known as kinetic Monte Carlo (KMC) [Bortz et al. 1975; Voter 2007], can be used to
advance the system from state to state. The list of adjacent states to which the next
transition might occur can be generated either by intuition, or by a procedure known
as adaptive KMC, in which most or all possible saddle points are sought through ran-
domly initiated searches [Henkelman and Jónsson 2001].

Here, we focus instead on the AMD approach: we let the trajectory itself find the
transition event, as it would in direct MD if we waited long enough, but we modify
the dynamics such that the trajectory picks this escape more quickly. The advantage
is that only one escape path (or, in the case of TAD, a few escape paths) must be found,
releasing us from the burden of trying to find all the escape paths. The challenge,
though, is to design the modified dynamics in such a way that the relative probabili-
ties of the different escape paths are preserved as accurately as possible. In the TAD
method, this acceleration is achieved by raising the temperature of the system, while
correcting for the tendency for transitions to occur in a different order at high temper-
ature. In the following, we briefly describe TAD, and we define and explain the various
TAD parameters we will vary in the TADSim simulations we present below.

In TAD, we advance the system from state to state at a temperature TLow using in-
formation from simulations at a higher temperature THigh. Temperature control during
these simulations is provided by a Langevin thermostat, e.g., by using the Langevin-
Verlet integrator in [Allen and Tildesley 1989], which utilizes a sequence of random
numbers. Starting from some configuration point (positions of all the atoms) RStart in
the initial state (state A) of the system, we first thermalize the system by evolving
the trajectory for a time tTherm, so that it loses its memory of the initial condition RStart
(block 1 in Fig. 1). At the end of each thermalization stage (and perhaps multiple times
during the thermalization time), we interrupt the trajectory and perform a transition
check (block 2 in Fig. 1), to verify that the trajectory is still in state A. If it fails this
check (i.e., if it is found to be in a different basin), the trajectory is placed again at
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Fig. 1. Serial TAD algorithm as an execution flow of discrete events in TADSim. Blue blocks require force
calls and green blocks do not.

some position inside state A, and the thermalization procedure is started from the
beginning. We discuss below how transition checks are performed.

Assuming the thermalization stage has succeeded, so that we have prepared a prop-
erly thermalized trajectory in state A, the trajectory is continued, and official MD time
tHigh begins accumulating (block 3 in Fig. 1). At regular intervals, tBlock, the trajectory
is interrupted to check for a transition (block 4 in Fig. 1), and this integration/detection
cycle is repeated until a transition to some state other than A (e.g., state j) is detected.

Transition checks, which play an important role in TAD, are achieved by using the
forces on the atoms to minimize the energy with respect to the geometry R (e.g., with a
steepest-descent or conjugate gradient algorithm), and comparing it toRMin, the known
minimizer for the current state. If no transition has occurred, it typically takes a few
to a few tens of force calls to conclude that the geometry is converging to RMin, while
if the system has made a transition to a new basin, much tighter convergence must
be achieved before a transition can be declared, so a larger number of force calls is
required. The determination of whether the transition to state j has been seen before
takes place in block 5 of Fig. 1.

The time of this first transition to state j, tHigh
j is taken to be a random time

distributed uniformly on the interval of the most recent block of MD, i.e., tHigh
j =

tHigh − rtBlock, where r is a random number distributed uniformly on [0,1]. If this is
a transition that has not been seen before, we then initiate a search to find the saddle
point that connects state A with state j using the nudged elastic band (NEB) method
[Jónsson et al. 1998] (block 6 in Fig. 1). In brief, the NEB approach relaxes a chain
of configurations that connect the initial to the final state, in which each pair of ad-
jacent configurations is connected by a 3N -dimensional spring. At convergence, the
highest-energy configuration in this chain gives a good approximation to the saddle-
point energy.
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A key concept in the TAD method is that each transition event observed in the tra-
jectory at high temperature can be mapped onto a transition event in a corresponding
hypothetical trajectory at the low temperature. At TLow the time associated with the
transition will be longer, and the order in which the transitions occur will in general
not be the same as at THigh. However, within the harmonic approximation to transition
state theory (HTST) [Vineyard 1957], the virtual transitions at TLow generated in this
way (the escape events and associated times) are in fact indistinguishable from those
that would be generated by a long trajectory integrated directly at temperature TLow.

In HTST, the escape rate to an adjacent state j is given by

kj = ν0jexp(−Ej/kBT ), (3)

where ν0j is a temperature-independent pre-exponential factor, kB is the Boltzmann
constant, and Ej is the barrier height, ESaddle,j − E(RMin). The pre-exponential factor
can be computed from the normal-mode vibrational frequencies at the minimum and
at the saddle point, although in the TAD method we don’t need to do this. Note that
in this approximation the only temperature dependence in the rate comes from the
barrier height Ej . Thus, once we have found the saddle point associated with the event,
we can compute the ratio of the rate constant at THigh to the rate constant at TLow, and
similarly we can compute the appropriately sampled time at TLow using

tLow
j = tHigh

j (kHigh
j /kLow

j ) = tHigh
j exp(Ej(1/kBTLow − 1/kBTHigh)). (4)

This gives us a point on our low-temperature time line at position tLow
j (block 7 in

Fig. 1). We now repeat this procedure, beginning with a fresh thermalization in state
A, and continuing to accumulate tHigh. Each time we detect a transition, we find the
saddle point and use Eq. 4 to place a point on the low-T timeline.

If we continue this high-temperature trajectory long enough, we will observe one or
more events for every possible escape path out of state A, and each of these events
will have an associated time at TLow for this particular realization of the dynamics. We
can identify the shortest-time event at TLow as the transition that would have occurred
first at TLow (at a time tLow-Shortest), and we can move the system to the state associated
with this event.

The second key concept in TAD, the one that allows us to obtain a computational
speedup (or boost) relative to direct MD, is that we can define a time, tStop, at which it
is safe to terminate the high-temperature trajectory, knowing that with a desired con-
fidence we have already observed the first low-temperature event. To define this stop
time, we make the additional approximation that there is a lower bound νMin on the
pre-exponential factors in the system, such that ν0j ≥ νMin for all reaction pathways
out of A or any other state the system may visit. We also introduce an uncertainty
parameter δ, which defines the confidence level 1 − δ for our assertion that we have
found the first event.

We can illustrate the TAD procedure, and derive the stop time, using an Arrhenius-
like graphical representation. In a standard Arrhenius graph, one plots the logarithm
of the rate against the inverse temperature, so that a reaction rate given by Eq. 3
corresponds to a downward sloping straight line with slope proportional to−Ej/kB and
intercept ln(ν0j). We make an analogous plot, replacing the logarithm of the rate with
the logarithm of inverse time. On such a plot, as shown in Fig. 2, the time progress
of the trajectory at THigh corresponds to nonlinear downward motion on the vertical
line at 1/THigh. For each escape event j at THigh, the time remapping given by Eq. 4
corresponds to extrapolation along a downward-sloping line with slope −Ej/kB to find
its intersection with the low-temperature timeline at 1/TLow. It is easy to see that a
high-barrier event extrapolates to a longer time at TLow than a low-barrier event, and
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Discrete Event-based Performance Prediction for TAD A:9

Fig. 2. Pictorial representation of the TAD method. Time moves down the vertical time lines shown. Each
attempted transition at the high temperature is extrapolated to the low temperature along a line with a
slope given by the negative of the activation energy (see Eq. 4). The MD simulation can be stopped, and
the shortest-time event at low temperature can be accepted, when the high-temperature time reaches the
intersection with the stop line (dashed), which connects the confidence-modified minimum prefactor on the
y axis with the shortest-time event found so far on the low-temperature time line.

this gives rise to the possibility that the events occur in a different order at THigh. This
is the main characteristic the TAD procedure must correct for: the first event at high
temperature is typically not the first event at low temperature.

For any reaction pathway with a rate kj , the probability distribution for the first
event will be given by an exponential distribution, as in Eq. 1. The probability that we
will see an escape along this pathway at least once before some time t′ can be found by
integrating Eq. 1 from zero to t′, which gives the relationship

Prob(First event time ≤ t′) = 1− exp(−kjt′). (5)

If we set this probability to 1 − δ, and consider a rate with the simple temperature
dependence given by Eq. 3, we obtain an expression for the time required to be (1− δ)-
confident of seeing the event,

tConf = [ν0j/ln(1/δ)]exp(−Ej/kBT ), (6)

On our Arrhenius-like plot, tConf corresponds to a line with slope −Ej/kB and intercept
ν0j/ln(1/δ). As we move down the vertical time line at a given temperature, when we
intersect this line, we have a confidence 1− δ that a reactive event along this pathway
will have occurred at least once.

We can now define the stop time, tStop (block 7 in Fig. 1). Once we have run the high-
temperature trajectory long enough to see at least one event, we construct a “stop line”,
which connects the time of the current shortest-time event on the low-temperature
timeline with a point on the y-axis corresponding to the confidence-modified minimum
pre-exponential factor,

ν∗Min = νMin/ln(1/δ), (7)

noting that each time a new event is detected, the stop-line definition may change.
The stop time is then the intersection of the high-temperature time line with this stop
line. When tHigh reaches tStop (block 8 in Fig. 1), the probability that any future event
at THigh would create a shorter-time event at TLow is lower than δ, so we can say with
confidence 1 − δ that it is safe to accept the event at tLow-Shortest and move the system
to the new state.

This can be understood by considering the scenario in which we proceed with the MD
trajectory infinitesimally beyond tStop and encounter an event X along a new pathway
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with barrier height EX . If EX is greater than EStop (where EStop/kB is the the nega-
tive of the slope of the stop line), then the extrapolated time for this new event will
be greater than tLow-Shortest and there is no problem – event X would not replace the
accepted event. However, if EX is less than EStop, then the extrapolated time would be
shorter than tLow-Shortest. However, by construction, the stop line we have just crossed
is the (1 − δ)-confidence line for the reaction pathway corresponding to the worst-case
possibility: EX = EStop and a νX = νMin. A reaction pathway with precisely this bar-
rier and prefactor probably does not exist in the system, but we can say with 1 − δ
confidence that if it did we would have already seen an event for this pathway. If a
slightly different pathway exists, e.g., with a higher prefactor, or a lower barrier, then
the probability is even greater than 1 − δ that we would have already observed this
pathway. Thus, overall, we can say that the probability is smaller than δ that we are
accepting the wrong event by terminating the trajectory at tStop.

Assuming that δ and νMin are chosen wisely, the main source of inaccuracy in the
TAD method arises from anharmonicity, the discrepancy between the actual transition
rate for a given pathway and the HTST predicted value for that rate from Eq. 3, with
its simple temperature dependence. This discrepancy (positive or negative), which is
negligible at low T and typically increases in magnitude with T , causes an error in the
predicted times at TLow when Eq. 4 is used to convert to the low temperature time for
the event.

The TAD method has been implemented in multiple codes, some of which are widely
used in the computational physics community [Plimpton 1995].

6. TADSIM - MODELING TAD AS A DISCRETE EVENT SIMULATION
TADSim – our parameterized application simulator – models the functionality of the
TAD method as described in the previous section through DES of the individual stages
of TAD, a flow-chart of which is shown in Fig. 1. Each stage becomes a discrete event in
TADSim, which upon being processed will create future events. The design of TADSim
relies on abstracting out the computationally intense parts and replacing them by the
passage of time, while keeping a realistic execution flow in place. The force call is
the most computationally intensive part of TAD and any other MD method. In fact,
compute cycle consumption is dominated by force calls in each stage of TAD, so that
the cost of the different stages of TAD is simply proportional to the number of force
calls that they consume. This is the key idea behind TADSim.

In the following, we present TADSIM details by explaining the parameters available,
the execution flow of the TAD simulation, the performance prediction metrics, and the
underlying simulation engine.

6.1. Design Space Parameters
Parameters that we can vary allow us to explore the hardware and software design
spaces. We divide the input parameters into four categories: (i) Physical System Pa-
rameters, (ii) Method Parameters, (iii) Architecture Parameters, and (iv) Simulation
Engine Parameters. Table I lists all the available parameters. A description of each
category and its associated parameters follow.

Physical System Parameters describe the material system that is the target of the
TAD simulation. NAtoms is the number of atoms simulated. TLow is the low temperature
at which the physical system is being simulated. FcClockCyclesPerAtom is the number
of clock cycles per atom for each force call. The total number of clock cycles used in
a single force call is then FcClockCyclesPerAtom × NAtoms. The actual value of this
parameter depends on the complexity of the potential.

A rate catalog of pathway information is precomputed using TAD machinery. This
rate catalog gives the characteristics of the various possible transitions that allow the
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Table I. TADSim Simulation Parameters

Name Description
Physical System Parameters
NAtoms # of atoms in system
TLow Low temperature (K)
FcClockCyclesPerAtom # of clock cycles per atom for force call computation
BarrierHeight Barrier height for each pathway in rate catalog (eV)
Prefactor Prefactor for each pathway in rate catalog
NEBCalls # of NEB force calls for each pathway in rate catalog
AnharmonicityCorrection Correction applied to pathway rate for anharmonicity
AnharmonicityMinTemp Minimum temperature (K) for anharmonicity adjustment
FcYesTransition # of force calls when a transition is detected
FcNoTransition # of force calls when a transition is NOT detected
FcTransitionWidthFraction Fractional width of normal distribution for transition force calls
Method Parameters
MDTTimestep MD Timestep (s)
MinPrefactor Minimum state/pathway prefactor, νMin
Delta Uncertainty value, δ
THigh High temperature (K)
FcBlock # of force calls per MD block
FcThermalize # of force calls per thermalize
FcThermalizeCheck Frequency of transition checks during thermalize (force calls)
FcCoreCount # of cores used for MD computation
TransCheckSpawnCoreCount # of cores to use when spawning a transition check
NEBBeadSpawnCoreCount # of cores to use per bead when spawning a NEB
NEBBeadCount # of beads for NEB saddle point calculation
Architecture Parameters
TotalCoreCount Total cores available
CoreClockSpeed Clock speed of cores (GHz)
CommDelay Communications delay during NEB (µs)
SpawnDelay Delay before and after spawning (µs)
Simulation Engine Parameters
TAD COUNT # of TAD trials to run
SEED Random seed
TIME FACTOR Smallest time unit in DES system (fraction of µs)
END TIME End of simulation (based on TIME UNIT)

system to exit from the initial state. BarrierHeight is the energy barrier (the difference
in energy between the saddle point and minimum) and Prefactor is the temperature-
independent pre-exponential factor. NEBCalls is the number of force calls required to
find the saddle point using the NEB method. AnharmonicityCorrection is a param-
eter used to determine the anharmonicity in the pathway rate when THigh is higher
than the AnharmonicityMinTemp. The anharmonicity correction factor, which multiplies
the rate, is given by (1 + (T − AnharmonicityMinTemp) × (AnharmonicityCorrection −
1)/AnharmonicityMinTemp), where AnharmonicityCorrection is path dependent. The
number of force calls required to complete a transition check is represented by
a normal distribution, with mean FcYesTransition and FcNoTransition for the
positive- and negative-resulting transition checks, respectively, and relative width
FcTransitionWidthFraction. FcYesTransition is much larger because a complete
minimization is required when a new state is discovered, while a negative re-
sult can be determined quickly. FcNoTransition also has a temperature dependent
factor, given by the same expression as above for the rate anharmonicity, with
AnharmonicityCorrection=6.0. These values and characteristics are based on the ob-
served TAD behavior.

Method Parameters are software or algorithmic parameters that define the method
variation (in our case a variation of TAD) that we are evaluating, and hence describe
the software side of the co-design loop. This category contains the most parameters
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that we will vary in parameter scans in later sections. MDTimeStep, MinPrefactor,
Delta, and THigh have been defined in Section 5. FcThermalize is the number of
force calls required to thermalize the system when the trajectory is replaced in
the state after a transition. Transition checks are performed every FcBlock and
FcThermalizeCheck force calls, during the MD and thermalization stages, respectively.
The early detection of a transition during thermalization and/or running MD reduces
the amount of wasted MD time, but frequent checks incur additional cost, unless the
transition check is spawned off, as we discuss below.
FcCoreCount is the number of cores used for running a force computation in

parallel. It allows us to test an extension to basic TAD, namely parallelizing a
force call. For the modest system sizes that are typically of interest with TAD, the
most common parallelization is a force decomposition strategy. The speedup of this
approach is limited by synchronization and reduction costs, and hence saturates
upon strong scaling. We model the speedup achieved by using FcCoreCount cores as√
a× FcCoreCount2/(a+ FcCoreCount2)/

√
a/(a+ 1), where a = 100. This function ini-

tially increases rapidly, but saturates at a speedup of 10 for large FcCoreCount.
NEBBeadCount is the number of beads used in the NEB method (i.e., the number of

configurations in the chain). The NEB force calls are executed by each bead in paral-
lel. Additional parallelism is achieved as each bead’s force calls can be executed by a
separate set of cores.
TransCheckSpawnCoreCount and NEBBeadSpawnCoreCount specify how many cores can

be allocated to transition checks and NEB computations (per bead) respectively, when
these computational stages are spawned as separate processes. We describe this in
more detail in Section 8.

Architecture Parameters characterize the hardware platform. Our hardware model
matches the level of abstraction that the software model provides. The architec-
ture parameters describe an architectural model of a large compute cluster consist-
ing of a number of cores (TotalCoreCount), each running at the same clock speed
(CoreClockSpeed). The simulated WCT that a force call takes to execute in TADSim
is the product of CoreClockSpeed, NAtoms, and FcClockCyclesPerAtom. Spawning or
creating a new process incurs a delay (SpawnDelay). If processes on different cores com-
municate with each other, a communication delay is incurred (CommDelay). As we focus
mainly on method parameters for TADSim, our hardware model is not very detailed
by design.

Simulation Engine Parameters control the internals of the underlying simulation en-
gine. These are largely self explanatory, and we note that the TIME FACTOR is typically
set to 1 µs.

6.2. Execution Flow
TADSim keeps track of multiple time scales simultaneously: simulated wall clock time
(WCT) for the TAD runtime; MD time at high temperature, collected only when run-
ning MD; and MD time at low temperature, as updated after each NEB is calculated.
Following the stages of TADSim in Fig. 1: Thermalization attempts are repeated until
no transition is observed during FcThermalize. Then MD is run one block at a time
(FcBlock MD steps), until a transition check indicates that a transition occurred. The
high temperature MD time is backed up by a random fraction of a block to correct for
the overestimation of the real transition time. The transition pathway is determined
randomly using the pre-calculated pathway rates and the algorithm described below. If
this pathway was not observed previously, the NEB calculation for the saddle point is
performed, at a cost that depends on the nature of the transition. Then, a new putative
MD stop time is calculated based on the new TAD low temperature MD time according
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Table II. TADSim Performance Prediction Metrics

Name Description
Algorithm Metrics
# of MD force calls Total force calls used when running MD
# of Transition Check force calls Total force calls used for transition checks
# of Thermalize force calls Total force calls used for running thermalize
# of NEB force calls Total force calls used for NEBs
# of force calls Total force calls
# of new pathways Total unique pathways seen
# of repeat pathways Total pathway replicates seen
TAD Shortest time Final Low temperature MD time (s)
MD time Total MD time (s)
MD WCT Total WCT for MD (s) when running on 1 core
Raw Boost TAD shortest time / MD stop time
Computational Boost MD WCT / WCT
Computational Boost Error Standard error for Computational Boost
Architecture Metrics
Maximum Cores Used Most cores used in parallel during simulation
# of Spawned Transition Checks Total transition checks spawned
# of Spawned NEBs Total NEBs spawned
Communication Cost Total messages (used when spawning)
WCT Total runtime (s)

to the TAD equations of Section 5. This becomes the official stop time if it is smaller
than the previous value. These stages are executed iteratively until the MD stop time
is reached.

The stochastic nature of TADSim lies in the transition checks: Transition checks
during thermalization and running MD involve determining whether a transition oc-
curred since the last check, if so, which of the possible transitions occurred, and how
long the transition check lasted. The probability P that any transition would occur
during the MD block is given by

P = 1− exp(−kTotal × MDBlockTime), (8)

where MDBlockTime = FcBlock × MDTTimestep. If P exceeds a random number drawn
on [0,1], then a transition has occurred. Since the probability for each particular tran-
sition is proportional to its rate, the index of the transition that occurred can then be
obtained by drawing another random number on [0,1] and identifying the interval of
the partial cumulative sum of relative rates where it is located. Finally, the duration of
a transition check is drawn from a normal distribution with specified mean (different
for positive vs. negative outcomes) and width, as discussed above.

6.3. Performance Prediction Metrics
TADSim has been instrumented to collect the algorithm and architecture prediction
metrics from each TAD trial as shown in Table II. Individual TAD metrics are reported
as well as average metrics across all TADs at run completion.

The algorithm metrics provide a means of comparison with the actual TAD simula-
tion runs. The Raw Boost provides the speedup of the TAD method based on MD time
alone (i.e., the amount of high temperature MD time that was required divided by the
low temperature TAD time that was achieved). This does not include the overhead
from thermalization and NEBs, and lost time (one half of a block on average) when a
transition is detected. This overhead is included in the Computational Boost, defined
as the ratio of the WCT it would take to run the same amount of low temperature MD
time on one core to the predicted TAD WCT. Force call counts are also provided per
algorithm stage.
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The architecture metrics provide information relevant to the computer architecture
being studied, such as the maximum number of cores used in parallel, spawning costs
in terms of counts and communication cost, and WCT. The WCT is the predicted run-
time of the TAD simulation given the input configuration.

6.4. Simulation Framework
We have used the C++ SimX (formerly known as SimCore) PDES Framework [Kroc
et al. 2007; Mniszewski 2010] for the implementation of TADSim. SimX is a library
for building large-scale distributed-memory, discrete event simulations using the dis-
crete event engine from the Parallel Real-time Immersive Modeling Environment
(PRIME) [Modeling & Networking Systems Research Group, Florida International
University 2012] for passing events, event queue maintenance, and synchronization.
The important concepts and classes within SimX are Entity, Service, Info, and Profile.
An Entity is a class that represents a simulation object, such as a Controller or TAD. A
Service is a class that is used to implement the behavior of an Entity and operates like
an event handler. Services are attached to Entities. An Info is a class that represents
an event that can be scheduled and supplies additional data items and is processed by
a Service. Infos are passed between Entities (more typically between Services) to trig-
ger an action. A Profile is a way of providing runtime specification of default parameter
settings for different types of Entities, Services, and Infos.

There are two kinds of simulation objects or Entities in TADSim, a TAD Entity and
a Controller Entity. A TAD Entity performs the TAD algorithm as shown in Fig. 1.
Multiple TAD Entities can run in parallel, each representing a separate trial, and no
communication is required between them. The simulation can run in a distributed
fashion with a Controller Entity on each CPU. The Controller Entity’s job is to start
the TAD Entities, coordinate transitions, collect prediction metric data from the TAD
Entities, and report average prediction metrics when done. When running distributed,
the Controller Entities operate as a hierarchy for passing on metric results.

7. VALIDATION
As a test of our approach, we compare the results of TADSim simulations with real
TAD simulations on an actual atomistic system. For simplicity, we choose to investi-
gate a silver adatom (an extra isolated atom) on a silver (100) surface (see Fig. 3). The
system contains 301 atoms, of which 151 are free to move (the bottom layers are held
fixed at their equilibrium position). The interatomic potential is of the embedded atom
method (EAM) form [Daw and Baskes 1984; Voter 1994], using a parameterization
for silver [Voter 1988]. By simulating the system using molecular dynamics at a high
temperature (T = 1200 K) for 25 ns, we identified 1379 possible transitions. The bar-
rier height and pre-exponential factor were determined for each pathway, as needed to
compute the HTST rate at any temperature using Eq. 3. The NEB calculation for each
pathway was deployed in the same way it would be in an actual TAD simulation, to ob-
tain values for NEBCalls. In this system, the dominant transition pathway (i.e., the one
with the lowest barrier of 0.492 electron volts (eV)) is a hopping mechanism that takes
the adatom to a nearest-neighbor binding site. There are four of these, as there are four
equivalent directions on the Ag(100) surface. At slightly higher energy (0.586 eV) there
is an exchange pathway in which the adatom plunges into the surface and pushes a
substrate atom up into the next-nearest neighbor position. All the remaining pathways
discovered in the MD involve two or more atoms and have barriers in the range of 0.98
eV to 1.65 eV. Anharmonicity corrections were determined, for just the hop and ex-
change events, by comparing the observed high temperature rates to the HTST rates,
giving AnharmonicityCorrection = 1.5 for the hop and AnharmonicityCorrection = 4.0
for the exchange (i.e., the MD hop rate is 1.5 times faster than the HTST hop rate at T
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Fig. 3. Atomistic system used for the validation of
TADSim, corresponding to an adatom on a silver
(100) surface. The moving atoms are blue, the non-
moving atoms are black and the adatom is shown in
red. The adatom can hop to an adjacent binding site,
or perform a two-atom exchange to a next-nearest
neighbor site. A large number of higher-barrier pro-
cesses are also available to this system.
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Fig. 4. Comparison of number of MD force calls and
Computational Boost for TAD vs. TADSim.

= 1000 K, and the exchange rate is 4 times faster). The resulting catalog of rates was
then used by TADSim.

TAD and TADSim were run using the parameter values in the second column of
Table III. TAD currently runs on only 1 core; likewise, the total available cores in
TADSim were limited to 1. 60–64 trials were run for high temperatures ranging from
500 K to 1200 K. The average number of force calls per algorithm stage and the Com-
putational Boost were compared. TAD was run in serial on 2.67 GHz Intel(R) Xeon(R)
CPU X5650 processors.

The results, shown in Fig. 4, demonstrate an excellent agreement between TAD and
TADSim results. For example, the number of forces calls taken during MD stages are
in excellent agreement over the whole range of high temperatures and properly ac-
count for the ∼ 100-fold change in this temperature range. We observe a similar agree-
ment in terms of the overall Computational Boost, which is the main metric of interest
in this study. Again, TADSim properly reproduced the temperature variation of the
boost, including the location of the maximum, and the absolute values are in excellent
agreement. We note that the agreement is not as good without the rate anharmonicity
corrections.

Incidentally, these results illustrate the challenge in predicting the performance of
TAD: while the number of force calls decreases monotonously with increasing high
temperature (a consequence of the fact that the expected stop time decreases as THigh
increases), the increasingly large overhead from the thermalization, transition checks,
and NEBs counteract this gain, leading to an optimal performance at finite tempera-
ture. Minimizing the impact of this type of overhead on the run time of TAD is the key
to improving the performance.

These results clearly demonstrate that TADSim reliably predicts performance
trends and can be used as a good performance predictor in a systematic co-design
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approach. This also validates the abstraction of the TAD algorithm that underpins
TADSim.

8. EXPLORING NEW ALGORITHM EXTENSIONS
As previously noted, mitigating the impact of overhead is key to performance. In that
respect, transition checks and NEBs are prime candidates for optimization, given their
high cost (up to 500 and 20,000 force calls, respectively, for the validation example).

In usual conditions, most transition checks return with a negative result. It can
therefore be beneficial to spawn off a transition check and start running the next MD
block, speculating that the transition check will indeed return a negative result. This
allows for the concurrent execution of the MD and transition checks. Once a transition
is seen, the current MD block is aborted and TADSim rolls back to the point where
the MD block that resulted in the positive transition check ended (which can be a few
MD blocks in the past, depending on the duration of the check). This is known as a
speculative programming model [Tapus and Hickey 2007]. It does require the use of
extra cores and start/stop overhead time for the spawning, but can lead to a reduction
in overall runtime.

Likewise, this same idea can be applied to NEBs. As pathways are seen for the first
time, NEBs can be spawned and the next thermalization started, potentially resulting
in multiple NEBs executing simultaneously. The stop times are updated as the results
of the NEBs become available, and, as soon as it can be established that the MD stop
time has already been reached by the ongoing MD, unfinished tasks are aborted and
the simulation ends. Spawning NEBs can lead to a significant improvement in the run
time.

Speculative spawning requires specifying the number of cores used for a
spawned transition check (TransCheckSpawnCoreCount) and a spawned NEB
(NEBBeadSpawnCoreCount). When spawning is attempted, TADSim insures that a suffi-
cient number of cores are available to complete the request. When not enough cores are
available, transition checks are performed serially. In the case of NEBs, the availabil-
ity of cores is reassessed after a preset delay, until spawning is possible. A delay before
and after spawning (SpawnDelay) represents the start-up and tear-down of lightweight
vs. heavyweight threads.

9. RESULTS
TADSim can be used to predict TAD performance given a set of parameter choices
as part of an optimization process or a parameter scan. In the following, the primary
performance metric is the Computational Boost, which is the speed-up over standard
MD on a single core, including overhead. In our co-design context, a set of parameter
values defines a variation of TAD on the software side, as well as an architecture
on the hardware side. While a standard parameter optimization procedure, such as a
genetic algorithm, could be used for such a task, such a single-path optimization run
would not characterize the response surface of the performance function over these
hardware and software design spaces very well. In particular, it would not allow us to
explicitly study tradeoffs between different parameters. However, if the goal is simply
to identify optimal parameters without rationalizing the nature of the optimum, an
optimization approach is preferable.

We execute parameter scans in a fully factorial fashion over a suitably discretized
design space, leveraging access to supercomputing resources. The resulting high-
dimensional description of the response surface, which is the dependence of perfor-
mance on software and hardware parameters, enables us to discover the traces of per-
formance phenomena. However, any factorial design inevitably results in a very signif-
icant CPU time consumption. This is addressed by initially running a coarse scan for
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Table III. TADSim Parameter Scan Values

Name Validation Coarse Scan Values Detail Scan Values
Physical System Parameters
NAtoms 151 atoms
TLow 300 K 200 K, 300 K 300 K
FcClockCyclesPerAtom 8000 cycles
BarrierHeight Precomputed per pathway in rate catalog
Prefactor Precomputed per pathway in rate catalog
FcNEB Precomputed per pathway in rate catalog
AnharmonicityCorrection Precomputed per pathway in rate catalog
AnharmonicityMinTemp 500 K
FcYesTransition 500 force calls
FcNoTransition 10 force calls
FcTransitionWidthFraction 0.25
FcThermalize 500 force calls
NEBBeadCount 21 beads
Method Parameters
MDTTimestep 4 fs
MinPrefactor 1011 s−1

Delta 0.01
THigh 400 K - 1200 K 400 K, 600 K, 800 K, 800 K, 850 K, 900 K,

in 100 K steps 1000 K, 1200 K 950 K, 1000 K, 1050 K,
1100 K, 1150 K, 1200 K

FcBlock 500 force calls 1, 2, 10, 50, 100, 400 1, 2, 5, 20, 100
FcThermalizeCheck 500 force calls 1, 2, 10, 50, 100, 400 1, 2, 5, 20, 100
FcCoreCount 1 1, 16, 64, 512, 4096 cores 64 cores
TransCheckSpawnCoreCount 0 0, 1, 16, 64, 256 cores 64 cores
NEBBeadSpawnCoreCount 0 0, 1, 16, 64, 256 cores 64 cores
Architecture Parameters
TotalCoreCount 1 1, 64, 512, 4096, ∞ cores

32768,∞ cores
CoreClockSpeed 2 GhZ
CommDelay 1 µs
SpawnDelay 1000 µs

a discrete set of parameters, followed by a tightly meshed, fully factorial scan around
the peak performance point. We further define focused scans on just a few parameters
to precisely assess the nature of the performance phenomena.

The evaluation was performed on an HPC network using multiple nodes for simula-
tion. The cluster is composed of nodes with 4 Quad-Core AMD Opteron 8354 Proces-
sors operating at 2.2 GHz interconnected using Infiniband 4X Dual Data Rate DDR
network. Single core DES runs were distributed across multiple nodes using GNU
Parallel (www.gnu.org/software/parallel/).

9.1. Parameter Scans to Explore the Performance Response Surface
Here we present results from fully factorial parameter scans of TADSim hardware and
software parameters with the values as given in the third column of Table III. Only
values that differ from the validation run are shown. The selection of parameters to
be varied was chosen by our domain experts. Preliminary runs identified parameters
that had little effect on performance, such as CommDelay. This indicates that our vari-
ations of TAD are not communication-bound. Use of ∞ for TotalCoreCount allowed
us to explore extreme or unlimited situations. The small values for the number of
force calls between transition checks during thermalization (FcThermalizeCheck) and
running MD (FcBlock) represent similarly extreme situations, as they would be very
inefficient in serial. Overall, our parameter values generated millions of scenarios. We
performed 64 independent runs for each scenario using different random seeds to ob-
tain averaged performance metrics. Partial results of the scan are presented in Fig. 5
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and Fig. 6. In these figures, we vary one parameter, THigh or FcBlock, and plot the cor-
responding maximum Computational Boost over the rest of the parameter space. Low
temperature (TLow) is set to 300 K. Results are shown for different TotalCoreCount
limits.

Because the results in Figs. 5 and 6 represent scenarios giving the maximum Com-
putational Boost taken from data with statistical error bars, we require an additional
procedural step to eliminate bias in the results. For a given parameter constraint (e.g.,
THigh and TotalCoreCount) in Fig. 5), the optimum scenario chosen from all possible
combinations of the remaining parameters will have the largest Computational Boost
not solely due to having the best parameter settings, but instead due to a combina-
tion of good parameter settings and a favorable (positive) statistical fluctuation. Con-
sequently, this value will be biased in the positive direction. To eliminate this bias,
after selecting the maximum-boost scenario, we recompute the Computational Boost
for that scenario with a freshly-chosen random number seed, and we plot this value.
Each result shown thus represents a lower-bound on the true value, with statistical er-
ror bars, where the lower-bound nature arises from two sources: 1) the procedure just
described can lead to selection of a less-than-optimal grid point and 2) the parameter
grid has finite resolution.

Fig. 5 shows the performance of TAD variations of different maximum core counts
(TotalCoreCount) at different high temperatures (THigh). Consistently, peak perfor-
mance is seen at a THigh of 1000 K for each of the TotalCoreCount values. The cor-
responding plot for TLow = 200 K (not shown) is qualitatively similar but has a less
pronounced peak. Even with this coarse scan we can state that 64 cores are sufficient
to reap a majority of the parallel performance possible. Values of TotalCoreCount be-
yond 64 provide an additional improvement of ∼40%. We note that the lower boost at
64 cores is limited by a lower number of CPUs available to do MD (FcCoreCount = 16,
giving 8.5x speedup compared to a single core, out of a maximum possible speedup
of 10x) and fewer CPUs for spawning transition checks (TransCheckSpawnCoreCount =
16).

Fig. 6 shows the dependence of the performance on FcBlock, the time interval be-
tween transition checks. We note again the benefit of allowing additional cores, es-
pecially for very frequent transition checks. Interestingly, we see that performance is
similar for all values of of FcBlock for larger core counts, as all transition checks and
NEBs are spawned. Lower core counts result in a mix of spawned and not-spawned
transition checks, producing lower performance when FcBlock is small.
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The fully factorial scan provides (i) a strong indication of the location of the opti-
mal performance area and (ii) uncovers performance behavior phenomena that merit
further study. In the following subsections, we present the results of a fully factorial
tightly meshed scan around the optimum parameter values suggested by the coarse
scan and we describe a series of low parameter dimension studies to illuminate the
performance behavior found in the coarse scan.

9.2. Detailed Scan Around the Optimum Parameter Values
For the detailed scan, we vary the parameters around the optimal values found in the
coarse scan as described in the fourth column of Table III. We applied the same unbi-
asing procedure as above, so again these points represent lower bounds on the exact
results, with statistical error bars, although now the bounding and the error bars are
much tighter (e.g., see Fig. 7, which shows both the maximum points (red) as well as
the points resampled with fresh random number seeds (green)). Fig. 7 shows the per-
formance results with respect to THigh when TLow = 300 K. We find that for our silver
physical system, the optimum high temperature is 950 K. Fig. 8 shows the variation
of the boost upon varying the time between transition checks during thermalization
(FcThermalize) or MD (FcBlock). In this optimization with unlimited cores, any depen-
dence on FcBlock virtually disappears over the range considered (FcBlock≤100). This
offers the user the opportunity to make more frequent transition checks to improve
the physical time-scale resolution, which can be important to the accuracy of the final
physical predictions in some cases. However, as discussed above (and also see below),
greater total core counts are required for the small values of FcBlock.

9.3. Exploring Performance Phenomena: One-dimensional Parameter Scans
The fully-factorial coarse scan points to performance phenomena that warrant further
study. We focus on a few scenarios in detail, varying only a few parameters, and we
organize our findings along observations.

OBSERVATION 1. The optimal high temperature THigh decreases with increasing
TLow.

Our observation of how TLow and THigh relate is at first glance surprising and appears
counter-intuitive. More in-depth theoretical analysis has confirmed that finding to be
accurate. We show in Fig. 9 how the optimum high temperature THigh increases with
decreasing TLow. The logarithmic y-axis scale is noteworthy, as it illustrates how much
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more Computational Boost we gain for lower temperatures: more than three orders
of magnitude between the low temperatures of 300 K and 200 K. This is expected
given that the exponential decrease of transition rates with decreasing temperature
tremendously increases the potential for acceleration. The results also show that the
optimum THigh moves from 850 K at a TLow of 200 K to 750 K at a TLow of 500 K. This
can be explained by the following: for a given system, a given setting for THigh and
TLow leads to a particular value for the average slope of the “stop line” (dashed line in
Fig. 2), the line connecting shortest-time event at TLow with νMin∗ on the y axis. For
typical values of νMin and δ, if Tlow is increased, the average slope of this stop line will
decrease in magnitude (become less negative), because the time of the shortest-time
event decreases. This weaker slope means that if we consider lowering THigh, which has
the benefit of reducing the average number of NEBs required before the stop time is
reached, we can do so with less of a penalty in terms of lost boost. Thus, if THigh was
chosen optimally for the first value of TLow, this implies that for a higher TLow, the new
optimum THigh is lower. Another consequence of this is that if TLow is raised far enough,

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



Discrete Event-based Performance Prediction for TAD A:21

the slope of the stop line can actually become positive, at which point the optimum
setting for THigh is THigh = TLow, indicating that direct MD will be faster than TAD.

We note that the optimum high temperature in Fig. 9 is different (lower) than in our
factorial scans because the scenarios used in Fig. 9 correspond to: TotalCoreLimit = 1,
FcCoreCount = 1, FcBlock = 500, FcThermalizeCheck = 500, and no spawning allowed.
In essence, our one-dimensional scan along the TLow variable was done on a single
core architecture. The absence of spawning accounts for a factor of a few in loss of
boost, while the serial nature of the force call costs an additional factor of about 10.
The fact that the optimum temperature depends on other parameters points to the
high-dimensional and complex nature of our response surface. TAD can run at higher
optimal THigh values for more complex architectures because the parallelization of force
calls and spawning of NEBs and transition checks can partially amortize the cost of
processing the larger number of transitions that will occur before the stop time is
reached.

OBSERVATION 2. Spawning transition checks and NEBs is advantageous if enough
cores are provided.

Spawning of transition checks and NEBs are two key algorithmic variations for en-
hancing the basic TAD method. A comparison of TADSim with and without spawn-
ing is shown in Fig. 10 and Fig. 11. The parameters used for these scenarios are
as follows: TLow = 200 K, FcBlock = 100, FcThermalizeCheck = 100, FcCoreCount =
64, TotalCoreCount = ∞. Fig. 10 shows the case where TransCheckSpawnCoreCount =
NEBBeadSpawnCoreCount = FcCoreCount = 64. We see that spawning transition checks
alone (green curve) increases the boost by about 25%. Spawning NEBs alone (blue
curve) gives a larger effect (∼ 60%), and the optimum THigh increases from 850 K to
1000 K, because the spawned NEBs hide most of the work caused by the larger number
of attempted transitions at higher THigh. Once NEBs are spawned, spawning transition
checks also (red curve) gives a larger effect than spawning transition checks alone. This
is because the force-call savings represent a greater fraction of the time once the NEB
cost has been eliminated. Note also that the optimum THigh then moves back down a
bit, to 950 K.

Fig. 11 shows the same study using a minimal core count for the spawned work,
TransCheckSpawnCoreCount = NEBBeadSpawnCoreCount = 1. The boost improvement
from spawning the NEBs is still substantial; even NEBBeadSpawnCoreCount = 1 is ef-
fective since it provides one core for each of the 21 NEB beads, giving a net speedup of
21/9.9, and (more importantly) it offloads the work in parallel. In contrast, while the
spawned single-core transition checks do improve the boost slightly at low values for
THigh, they actually cause a loss of boost for THigh above 850 K, because it is quicker to
do all the transition checks in serial with 64 cores (making each force call about 9.9x
faster than a single core) than to wait for the slower single-core spawned transition
check to complete once a transition does occur. This same detrimental behavior holds
when both NEBs and transition checks are spawned, so that it is better to spawn just
the NEBs in this case (blue curve vs. red curve). Note that the characteristics in both
Fig. 10 and Fig. 11 will vary a bit with the choice of FcBlock and FcThermalizeCheck,
which in this case were set to 100.

OBSERVATION 3. Frequent transition checks improve performance in large core-
count situations, while they are detrimental in limited-core situations.

Fig. 12 shows the dependence on FcBlock, the inverse frequency of transition checks,
using fixed parameters TLow = 300 K, FcCoreCount = 1 or 64, TransCheckSpawnCoreCount
= 64, and NEBBeadSpawnCoreCount = 64. The value of FcThermalizeCheck was matched
to FcBlock. We see that a serial code (red curve) gives its best performance when tran-
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sition checks are infrequent – there is a maximum at FcBlock = 512 (larger than 512
starts to degrade the physical predictions). In a parallel environment, at the same THigh
= 1100 K, using FcCoreCount = 64 and spawning NEBs gives a substantial speedup
(green curves at FcBlock=512). An additional 20% can be gained by shortening the
time between transition checks (solid green curve), but only if they are spawned (solid
green curve compared to dashed green curve), which requires that enough cores are
available. As mentioned above, this performance gain stems from the fact that transi-
tions can be detected sooner, which decreases the amount of “wasted”, post-transition
MD time. Looking at the THigh = 900 K case (blue curves), the effect is essentially the
same, and we note again the importance of choosing an optimal high temperature. Fi-
nally, we note that this 20% boost enhancement due to shortening the time between
transition checks should increase further if the MD time is accumulated in parallel,
e.g., by using parallel-dynamics [Voter 1998], because the half-block post-transition
time will be a greater fraction of the wall-clock time between transition events. We
leave investigation of this effect for future work.

10. SUMMARY AND FUTURE PLANS
We have introduced the concept of a parameterized application simulator, TADSim,
that models the TAD AMD method as a fast-running proxy using DES. This was ac-
complished by abstracting out the computationally intensive force calls and replacing
them by the passage of time while keeping true to the execution flow of the original
TAD application. This DES simulator results in a much lower computational cost than
actual TAD runs for understanding and exploring performance-related behavior. New
algorithmic extensions such as speculative spawning can be tested before being incor-
porated into the actual code. Parameter scans can be used to understand and explore
the limits of the current TAD implementation.

TADSim was validated against the original TAD code using an example silver mate-
rial system. Parameter scans using this same physical system have produced interest-
ing results that have allowed us to gain insight into the TAD algorithm behavior and
suggest performance enhancements. We have observed a clear optimum THigh, given a
TLow, where performance is best and we showed that TLow and this optimal THigh come
closer together with higher TLow. We have evaluated the potential impact of the paral-
lelization of TAD on performance. Adding parallelism to all force call computation is
an effective way to achieve a direct speedup, assumed in the present case to give a 10-
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fold effect. Spawning of transition checks and NEBs further improves the performance
and shifts the optimal THigh to a higher temperature. Increasing the frequency of tran-
sition checks can improve performance when large core counts are available. Overall,
the TAD algorithm can make use of hundreds of cores. These results add value for
future method development and physics research in molecular dynamics.

We have seen that one of the important parameters in optimizing the TAD perfor-
mance is the high temperature. A high value increases the potential speedup, while
making it too high degrades performance by introducing excessive overhead. Shim
and Amar have proposed ways [Shim and Amar 2011] to optimize the value for the
high temperature on the fly in TAD simulations. Our work here complements and ex-
tends that work, in that we explore the dependence on a large number of parameters
in addition to the high temperature, and we do so in the context of PDES.

Currently, TADSim supports exploration of the algorithmic choices more strongly
than architectural choices. Processor speed, core counts for MD and spawning, and
spawning start-up and tear-down timings allow for limited architectural exploration.
Future plans include coupling a more robust hardware model representing nodes,
memory, and communications. Parameters will be added to support exploration of
power consumption and resilience. Dynamic power usage will be tracked based on
a node’s characteristics and computations being performed. The value of specific re-
silience strategies for detection and recovery on runtime and computation quality will
be explored for given hardware error rates.

A ParRep application simulator has been developed that represents the parallel-
replica dynamics AMD method [Voter 1998], publication forthcoming. Potential future
directions include using TADSim for “on the fly” computational steering of TAD while
running, exploring optimal AMD method combinations using plug-and-play component
assemblies, and applying this DES approach to other application areas.
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